Dr. Stefan Metzger (AG Grün)
Prof. Stefan Metzger, (Lehrstuhlvertretung)
Short Curriculum Vitae
Oct 2023 – March 2025 | Acting W3 professor for numerical mathematics at the Friedrich-Alexander-Universität Erlangen-Nürnberg |
Since 2019 | PostDoc in Prof. Günther Grün’s group at the Friedrich-Alexander-Universität Erlangen-Nürnberg |
2019 – 2021 | Member of the GAMM Juniors |
2018 – 2019 | PostDoc in Prof. Chun Liu’s group at the Illinois Institute of Technology, Chicago, IL, USA |
2018 | Awardee of the ‚STAEDTLER Promotionspreis‘ (prize for exceptional doctoral thesis awarded by the Staedtler Foundation, Nuremberg, Germany) |
2017 | PhD in mathematics (Dr. rer. nat.), Friedrich-Alexander-Universität Erlangen-Nürnberg, final grade: summa cum laude Thesis on ‚Diffuse interface models for complex flow scenarios: Modeling, analysis, and simulation‘ (Supervisor: Prof. G. Grün) |
2013 | M.Sc. Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, final grade: 1.0 |
2011 | B.Sc. Technomathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, final grade: 1.3 |
2007 | Abitur, final grade: 1.0 |
My research primarily focuses on the derivation and (numerical) analysis of thermodynamically consistent models for complex flow problems. Thereby, I am in particular interested in
- nonlinear (multi-scale) partial differential equations,
- homogenization of multiphase flow,
- (degenerate) fourth order parabolic equations,
- stochastic partial differential equations.
I am also one of the main developers of the software package EconDrop.
A convergent stochastic scalar auxiliary variable method
In: IMA Journal of Numerical Analysis (2024)
ISSN: 0272-4979
DOI: 10.1093/imanum/drae065
BibTeX: Download
:
A convergent SAV scheme for Cahn–Hilliard equations with dynamic boundary conditions
In: IMA Journal of Numerical Analysis (2023)
ISSN: 0272-4979
DOI: 10.1093/imanum/drac078
BibTeX: Download
:
Existence of nonnegative solutions to stochastic thin-film equations in two space dimensions
In: Interfaces and Free Boundaries 24 (2022), S. 307-387
ISSN: 1463-9971
DOI: 10.4171/IFB/476
BibTeX: Download
, :
Phase-field dynamics with transfer of materials: The Cahn–Hillard equation with reaction rate dependent dynamic boundary conditions
In: Mathematical Modelling and Numerical Analysis 55 (2021), S. 229-282
ISSN: 0764-583X
DOI: 10.1051/m2an/2020090
BibTeX: Download
, , , :
An Efficient and Convergent Finite Element Scheme for Cahn-Hilliard Equations with Dynamic Boundary Conditions
In: SIAM Journal on Numerical Analysis 59 (2021), S. 219-248
ISSN: 0036-1429
DOI: 10.1137/19M1280740
BibTeX: Download
:
Homogenization of Two-Phase Flow in Porous Media From Pore to Darcy Scale: A Phase-Field Approach
In: Multiscale Modeling & Simulation 19 (2021), S. 320-343
ISSN: 1540-3459
DOI: 10.1137/19M1287705
BibTeX: Download
, :
A convergent finite element scheme for a fourth-order liquid crystal model
In: IMA Journal of Numerical Analysis (2020)
ISSN: 0272-4979
DOI: 10.1093/imanum/draa069
BibTeX: Download
:
On a novel approach for modeling liquid crystalline flows
In: Communications in Mathematical Sciences 18 (2020), S. 359-378
ISSN: 1539-6746
DOI: 10.4310/CMS.2020.v18.n2.a4
BibTeX: Download
:
A dimensionally reduced Stokes–Darcy model for fluid flow in fractured porous media
In: Applied Mathematics and Computation (2020)
ISSN: 0096-3003
DOI: 10.1016/j.amc.2020.125260
BibTeX: Download
, :
ON CONVERGENT SCHEMES FOR TWO-PHASE FLOW OF DILUTE POLYMERIC SOLUTIONS
In: Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique 52 (2019), S. 2357-2408
ISSN: 0764-583X
DOI: 10.1051/m2an/2018042
BibTeX: Download
:
On stable, dissipation reducing splitting schemes for two-phase flow of electrolyte solutions
In: Numerical Algorithms 80 (2019), S. 1361-1390
ISSN: 1017-1398
DOI: 10.1007/s11075-018-0530-2
BibTeX: Download
:
Micro-macro-models for two-phase flow of dilute polymeric solutions: macroscopic limit, analysis, numerics
In: Advances in Mathematical Fluid Mechanics, Springer, 2017, S. 291-303 (Transport processes at fluidic interfaces)
BibTeX: Download
, :
Diffuse interface models for incompressible two-phase flows with different densities
In: Advances in Mathematical Fluid Mechanics, springer, 2017, S. 203-229 (Transport processes at fluidic interface)
BibTeX: Download
, , , :
On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities
In: Communications in Computational Physics 19 (2016), S. 1473-1502
ISSN: 1815-2406
BibTeX: Download
, , :
On micro-macro-models for two-phase flow with dilute polymeric solutions -- modeling and analysis
In: Mathematical Models & Methods in Applied Sciences 26 (2016), S. 823-866
ISSN: 0218-2025
DOI: 10.1142/S0218202516500196
BibTeX: Download
, :
On numerical schemes for phase-field models for electrowetting with electrolyte solutions
In: Proceedings in Applied Mathematics and Mechanics 15 (2015), S. 715-718
ISSN: 1617-7061
DOI: 10.1002/pamm.201510346
BibTeX: Download
: