Dr. Stefan Metzger (AG Grün)

Dr. habil. Stefan Metzger
Graduiertenkolleg 2339/2 - IntComSin: Grenzflächen, komplexe Strukturen und singuläre Grenzwerte in der Kontinuumsmechanik - Analysis und Numerik
Wissenschaftliche Mitarbeitende
Kontakt
- E-Mail: stefan.metzger@fau.de
- Telefon: +49 9131 85 -67241
Short Curriculum Vitae
| April 2025 | Completion of habilitation procedure Thesis: „Mathematics on the Microscale: Modeling, Analysis, and Simulation“ Scientific mentors: Prof. Dr. Günther Grün (FAU Erlangen), Prof. Dr. Martin Burger (Universität Hamburg), Prof. Dr. Lubomir Banas (Universität Bielefeld) | 
| Oct 2023 – September 2025 | Acting W3 professor for numerical mathematics at the Friedrich-Alexander-Universität Erlangen-Nürnberg | 
| Since 2019 | PostDoc in Prof. Günther Grün’s group at the Friedrich-Alexander-Universität Erlangen-Nürnberg | 
| 2019 – 2021 | Member of the GAMM Juniors | 
| 2018 – 2019 | PostDoc in Prof. Chun Liu’s group at the Illinois Institute of Technology, Chicago, IL, USA | 
| 2018 | Awardee of the ‚STAEDTLER Promotionspreis‘ (prize for exceptional doctoral thesis awarded by the Staedtler Foundation, Nuremberg, Germany) | 
| 2017 | PhD in mathematics (Dr. rer. nat.), Friedrich-Alexander-Universität Erlangen-Nürnberg, final grade: summa cum laude Thesis on ‚Diffuse interface models for complex flow scenarios: Modeling, analysis, and simulation‘ (Supervisor: Prof. G. Grün) | 
| 2013 | M.Sc. Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, final grade: 1.0 | 
| 2011 | B.Sc. Technomathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, final grade: 1.3 | 
| 2007 | Abitur, final grade: 1.0 | 
My research primarily focuses on the derivation and (numerical) analysis of thermodynamically consistent models for complex flow problems. Thereby, I am in particular interested in
- nonlinear (multi-scale) partial differential equations,
- homogenization of multiphase flow,
- (degenerate) fourth order parabolic equations,
- stochastic partial differential equations.
I am also one of the main developers of the software package EconDrop.
- :
 A convergent augmented SAV scheme for stochastic Cahn–Hilliard equations with dynamic boundary conditions describing contact line tension
 In: Interfaces and Free Boundaries (2025)
 ISSN: 1463-9963
 DOI: 10.4171/IFB/540
 BibTeX: Download
- :
 Strong error estimates for a fully discrete SAV scheme for the stochastic Allen-Cahn equation with multiplicative noise
 In: Mathematical Modelling and Numerical Analysis (2025)
 ISSN: 0764-583X
 DOI: 10.1051/m2an/2025050
 BibTeX: Download
- :
 A convergent stochastic scalar auxiliary variable method
 In: IMA Journal of Numerical Analysis (2024)
 ISSN: 0272-4979
 DOI: 10.1093/imanum/drae065
 BibTeX: Download
- :
 A convergent SAV scheme for Cahn–Hilliard equations with dynamic boundary conditions
 In: IMA Journal of Numerical Analysis (2023)
 ISSN: 0272-4979
 DOI: 10.1093/imanum/drac078
 BibTeX: Download
- , :
 Existence of nonnegative solutions to stochastic thin-film equations in two space dimensions
 In: Interfaces and Free Boundaries 24 (2022), S. 307-387
 ISSN: 1463-9971
 DOI: 10.4171/IFB/476
 BibTeX: Download
- , , , :
 Phase-field dynamics with transfer of materials: The Cahn–Hillard equation with reaction rate dependent dynamic boundary conditions
 In: Mathematical Modelling and Numerical Analysis 55 (2021), S. 229-282
 ISSN: 0764-583X
 DOI: 10.1051/m2an/2020090
 BibTeX: Download
- :
 An Efficient and Convergent Finite Element Scheme for Cahn-Hilliard Equations with Dynamic Boundary Conditions
 In: SIAM Journal on Numerical Analysis 59 (2021), S. 219-248
 ISSN: 0036-1429
 DOI: 10.1137/19M1280740
 BibTeX: Download
- , :
 Homogenization of Two-Phase Flow in Porous Media From Pore to Darcy Scale: A Phase-Field Approach
 In: Multiscale Modeling & Simulation 19 (2021), S. 320-343
 ISSN: 1540-3459
 DOI: 10.1137/19M1287705
 BibTeX: Download
- :
 A convergent finite element scheme for a fourth-order liquid crystal model
 In: IMA Journal of Numerical Analysis (2020)
 ISSN: 0272-4979
 DOI: 10.1093/imanum/draa069
 BibTeX: Download
- :
 On a novel approach for modeling liquid crystalline flows
 In: Communications in Mathematical Sciences 18 (2020), S. 359-378
 ISSN: 1539-6746
 DOI: 10.4310/CMS.2020.v18.n2.a4
 BibTeX: Download
- , :
 A dimensionally reduced Stokes–Darcy model for fluid flow in fractured porous media
 In: Applied Mathematics and Computation (2020)
 ISSN: 0096-3003
 DOI: 10.1016/j.amc.2020.125260
 BibTeX: Download
- :
 ON CONVERGENT SCHEMES FOR TWO-PHASE FLOW OF DILUTE POLYMERIC SOLUTIONS
 In: Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique 52 (2019), S. 2357-2408
 ISSN: 0764-583X
 DOI: 10.1051/m2an/2018042
 BibTeX: Download
- :
 On stable, dissipation reducing splitting schemes for two-phase flow of electrolyte solutions
 In: Numerical Algorithms 80 (2019), S. 1361-1390
 ISSN: 1017-1398
 DOI: 10.1007/s11075-018-0530-2
 BibTeX: Download
- , :
 Micro-macro-models for two-phase flow of dilute polymeric solutions: macroscopic limit, analysis, numerics
 In: Advances in Mathematical Fluid Mechanics, Springer, 2017, S. 291-303 (Transport processes at fluidic interfaces)
 BibTeX: Download
- , , , :
 Diffuse interface models for incompressible two-phase flows with different densities
 In: Advances in Mathematical Fluid Mechanics, springer, 2017, S. 203-229 (Transport processes at fluidic interface)
 BibTeX: Download
- , , :
 On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities
 In: Communications in Computational Physics 19 (2016), S. 1473-1502
 ISSN: 1815-2406
 BibTeX: Download
- , :
 On micro-macro-models for two-phase flow with dilute polymeric solutions -- modeling and analysis
 In: Mathematical Models & Methods in Applied Sciences 26 (2016), S. 823-866
 ISSN: 0218-2025
 DOI: 10.1142/S0218202516500196
 BibTeX: Download
- :
 On numerical schemes for phase-field models for electrowetting with electrolyte solutions
 In: Proceedings in Applied Mathematics and Mechanics 15 (2015), S. 715-718
 ISSN: 1617-7061
 DOI: 10.1002/pamm.201510346
 BibTeX: Download

